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Abstract

In unstructured peer-to-peer (P2P) networks, the overlay
topology (or connectivity graph) among peers is a crucial
component in addition to the peer/data organization and
search. Topological characteristics have profound impact
on the efficiency of search on such unstructured P2P net-
works as well as other networks. A key limitation of scale-
free (power-law) topologies is the high load (i.e. high de-
gree) on very few number of hub nodes. In a typical unstruc-
tured P2P network, peers are not willing to maintain high
degrees/loads as they may not want to store large number
of entries for construction of the overlay topology. So, to
achieve fairness and practicality among all peers, hard cut-
offs on the number of entries are imposed by the individual
peers, which limits scale-freeness of the overall topology.
Thus, it is expected that efficiency of the flooding search re-
duces as the size of the hard cutoff does. We investigate
construction of scale-free topologies with hard cutoffs and
effect of these hard cutoffs on the search efficiency.

1. Introduction

In decentralized P2P networks, the overlay topology (or
connectivity graph) among peers is a crucial component in
addition to the peer/data organization and search. Topolog-
ical characteristics have profound impact on the efficiency
of search on P2P networks as well as other networks. It has
been well-known that search on small-world topologies can
be as efficient as O(ln N) [17], and this phenomenon has
recently been studied on P2P networks [20, 15, 16]. The
best search efficiency in realistic networks can be achieved
when the topology is scale-free (power-law), which offers
search efficiencies like O(ln ln N). However, generation
and maintenance of such scale-free topologies are hard to
realize in a distributed and potentially uncooperative envi-
ronments as in the P2P networks. Another key limitation

of scale-free topologies is the high load (i.e. high degree)
on very few number of hub nodes. In a typical unstruc-
tured P2P network, peers are not willing to maintain high
degrees/loads as they may not want to store large number
of entries for construction of the overlay topology. So, to
achieve fairness and practicality among all peers, hard cut-
offs on the number of entries are imposed by the individ-
ual peers. These hard cutoffs might limit scale-freeness of
the overall topology, by which we mean having a network
with a power-law degree distribution from which an expo-
nent can be obtained properly. Thus, it is expected that the
search efficiency reduces as the size of the hard cutoff does.

Although scale-free topologies are superior in search ef-
ficiency, their super-hub-based structure makes them vul-
nerable to threats and impractical due to unfair assignment
of network load on a very small subset of all nodes. As peers
in a P2P network are typically not fully cooperative, proto-
cols cannot rely on methods working with full cooperation
of peers. For example, peers may not want to store large
number of entries for construction of the overlay topology,
i.e. connectivity graph. Even though characteristics of the
overlay topology is crucial in determining the efficiency of
the network, peers typically do not want to take the bur-
den of storing excessive amount of control information for
others in the network. Effect of this on the overlay topol-
ogy maintenance is that peers impose hard cutoffs on the
amount of control information to be stored. Since P2P over-
lay topology generation and maintenance are very important
for realizing a scalable unstructured P2P network, the main
focus of this paper is to investigate the effect of the hard
cutoffs on the overall search efficiency.

A key issue is the construction of scale-free overlay
topologies without global information. There are several
techniques to generate a scale-free topology, which rely on
global information about the current network when a new
node joins. Such global methods are not practical in P2P
networks, and local heuristics in generating such scale-free
overlay topologies with hard cutoffs is the key issue, which
we investigate in this paper. In other words, each peer has
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to figure out the optimal way of joining the P2P overlay by
only using the locally available (i.e. immediate/close neigh-
bors) information, and also causing a minimal inefficiency
to the search mechanisms to be run on the network.

This paper touches an uncovered set of research prob-
lems relating to tradeoffs between maximum number of
links a peer can (or is willing to) store and the efficiency of
search on an overlay topology composed of such peers. We
defined the maximum number of links to be stored by peers
as the hard cutoff for the degree of a peer in the network as
compared to natural cutoff which occurs due to finite-size
effects. The primary focus of this paper is to (i) investigate
construction of scale-free topologies with hard cutoffs (i.e.
there are not any major hubs) in a distributed manner with-
out requiring global topology information at the time when
nodes join and (ii) to investigate the effect of these hard cut-
offs on the search efficiency.

The rest of the paper is organized as follows: First, we
survey previous work on P2P networks in Section 2. In Sec-
tion 3, we survey the previous work on scale-free topology
generation. We introduce our practical topology genera-
tion methodologies, Hop-and-Attempt Preferential Attach-
ment (HAPA) and Discover-and-Attempt Preferential At-
tachment (DAPA), in Section 4. In Section 5, we present our
simulations of three different search algorithms (i.e., Flood-
ing (FL), Normalized Flooding (NF), and Random Walk
(RW)) on topologies generated by the introduced models.
We conclude by summarizing the work and future direc-
tions in Section 6.

2. Related Work

Our work is related to peer-to-peer (P2P) network proto-
col designs and topological analysis of complex networks.
Previous work on P2P network protocols can be classified
into centralized and decentralized ones. As centralized P2P
protocols (e.g. Napster [3]) proved to be unscalable, the
majority of the P2P research has focused on decentralized
schemes. The decentralized P2P schemes can be further
classified into sub-categories: structured, unstructured, and
hybrid. In the structured P2P networks, data/file content of
peers is organized based on a keying mechanism that can
work in a distributed manner, e.g. Distributed Hash Ta-
bles (DHTs) [22]. In contrast to the structured schemes,
unstructured P2P networks do not include a strict organiza-
tion of peers or their content. Since there is no particular
keying or organization of the content, the search techniques
are typically based on flooding. Thus, the searches may
take very long time for rare items. To balance the tradeoffs
between structured and unstructured schemes, hybrid ap-
proaches (e.g. [23, 26]) have attempted attaining a middle-
ground between the costly maintenance of global peer/data
keying of structured schemes and the high cost searches of

unstructured schemes.
Since our work is more applicable to unstructured P2P

networks, we focus our survey in this section to that cate-
gory of the previous work. The main focus of the research
on unstructured P2P networks has been the tradeoff between
state complexity of peers (i.e. number of records needed to
be stored at each peer) and flooding-based search efficiency.
The minimal state each peer has to maintain is the list of
neighbor peers, which construct the overlay topology. Op-
tionally, peers can maintain forwarding tables (also referred
as routing tables in the literature) for data items in addition
to the list of neighbor peers. Thus, we can classify unstruc-
tured P2P networks into two based on the type(s) of state
peers maintain: (i) per-data unstructured P2P networks (i.e.
peers maintain both the list of neighbor peers and the per-
data forwarding table), and (ii) non-per-data unstructured
P2P networks (i.e. peers maintain only the list of neighbor
peers).

In non-per-data schemes, search is performed by means
of flooding query packets. Search performance over such
P2P networks has been studied in various contexts, which
includes pure random walks [13], probabilistic flooding
techniques [18, 14], and systematic filtering techniques
[25].

Per-data schemes (e.g. Freenet [2]) can achieve bet-
ter search performances than non-per-data schemes, though
they impose additional storage requirements to peers. By
making the peers maintain a number of <key,pointer> en-
tries peers direct the search queries to more appropriate
neighbors, where “key” is an identifier for the data item be-
ing searched and the “pointer” is the next-best neighbor to
reach that data item. This capability allows peers to lever-
age associativity characteristics of search queries [10].

3. Scale-Free Network Topologies

Recent research shows that many natural and artificial
systems such as the Internet, World Wide Web have power-
law (i.e. scale-free) degree (connectivity) distributions, i.e.,
P (k) ∼ k−γ . Barabási and Albert [6] proposed a mech-
anism known as preferential attachment (PA or rich get
richer) which generates a scale-free network for which the
degree distribution exponent γ=3. In this study, we use a
simple version of the PA model. The model evolves by one
node at a time and this new node is connected to m (number
of stubs) different existing nodes with probability propor-
tional to their degrees, i.e., Pi=ki/

∑
j kj where ki is the

degree of the node i. The average degree per node in the
resulting network is 2m. Fig. 1(a) shows the degree distri-
butions of scale-free networks generated by the PA model
with different m values. The power-law fits to the distri-
butions have exponents between (−2.9,−2.8). The dashed
line is a power-law function with exponent γ = 2.85. Sim-
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(a) P (k) without hard cutoff. (b) P (k) for different hard cutoffs. (c) P (k) exponents vs. hard cutoffs.

Figure 1. Degree distribution P (k) for various networks generated by the PA model. The number of
nodes is N=105 and for every data point 10 different realizations of the network have been used.

Table 1. Scale-freeness vs. network diameter

Diameter Exponent Number of stubs
d γ m

O(ln ln N) (2,3) ≥ 1
O(lnN/ ln lnN) 3 ≥ 2

O(ln N) 3 1
O(ln N) > 3 ≥ 1

ulations show that the exponent γ = 3 is attainable only for
very large networks. The special case of the PA procedure
is when the number of stubs is one (i.e. m=1) in which a
scale-free tree without clustering (loops) is generated.

Scale-free networks also have small-world [24] proper-
ties. In small-world networks the diameter, or the mean
hop distance between the nodes scales with the system size
(or the number of network nodes) N logarithmically, i.e.,
d ∼ ln N . The scale-free networks with 2 < γ < 3 have
a much smaller diameter and can be named ultra-small net-
works [11], behaving as d ∼ ln lnN . When γ = 3 and
m ≥ 2, d behaves as in d ∼ ln N/ ln lnN . However, when
m = 1 for γ = 3 the Barabási-Albert model turns into a tree
and d ∼ ln N is obtained. Also when γ > 3, the diameter
still behaves logarithmically d ∼ ln N . These relationships
are summarized in Table 1. Since the speed/efficiency of
search algorithms strongly depend on the average shortest
path, scale-free networks have much better performance in
search than other random networks.

3.1. The Cutoff

One of the important characteristics of scale-free net-
works is the natural cutoff degree (or maximum degree)
due to the finite-size effects. In [5] it was defined as the
value of the degree, for which the expected number of
nodes is 1, i.e., NProb(k = knc)∼1. For a scale-free net-
work, when one substitutes P (k)∼k−γ into equation above,
knc(N) ∼ N1/γ is obtained. This definition of natural cut-
off degree used in many P2P network studies lacks some

mathematical rigor since it considers the probability of a
single point in a probability distribution, which is not com-
pletely well-defined in the continuous k limit for large N
[8]. A more physical definition of cutoff was given in [12]
as the value of the degree above which one expects to find
at most one vertex. Namely,

N

∫ ∞

knc

P (k)dk ∼ 1. (1)

By using the exact form of probability distribution (i.e.,
P (k) = (γ − 1)mγ−1/kγ), one obtains

knc(N) ∼ mN1/(γ−1). (2)

For the scale-free networks generated by PA model (γ=3)
the natural cutoff becomes

knc(N) ∼ m
√

N. (3)

3.2. Preferential Attachment (PA) with Hard Cutoffs

The natural cutoff may not be always attainable for most
of the scale-free networks due to technical reasons. One
main reason is that the network might have limitations on
the number of links the nodes can have. This is especially
important for P2P networks in which nodes can not possibly
connect many other nodes. This requires putting an artificial
or hard cutoff kc to the number of links one node might
have.

In order to see the effect of hard cutoff in PA, we simply
did not allow nodes to have links more than a fixed hard
cutoff value during the attachment process. This modified
method generates a scale-free network in which there are
many nodes with degree fixed to hard cutoff instead of a
few very high-degree hubs and the degree distribution still
decays in a power law fashion. The degree distributions
of scale-free networks generated by PA with different hard
cutoff values are shown in Fig. 1(b). As can be seen in the
figure they are slightly different than PA without a cutoff
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(a) CM when γ = 3 (b) HAPA model when kc = 50

Figure 2. Degree distribution for CM and
HAPA model.

in terms of exponent except that they have an accumulation
of nodes with degree equal to hard cutoff. PA model, in its
original form, has a constant degree distribution exponent
γ=3 for very large networks. However, when a hard cutoff
is introduced it is observed that the absolute value of degree
distribution exponent decreases as in Fig. 1(c).

3.3. Configuration Model (CM)

Given that the PA model yields lower degree distribution
exponents as the hard cutoff reduces, we were motivated
to work on generation of power-law networks with differ-
ent exponents. In other words, instead of dealing with hard
cutoffs, it is possible to achieve a natural cutoff value less
than the targeted hard cutoff. In this manner, the peaks at the
hard cutoff value of Fig. 1(b) can be prevented and a smooth
power-law distribution of degrees can be obtained. Here, we
use the configuration model (CM) with a predefined degree
distribution to generate a static scale-free network [21].

CM [7, 21] was introduced as an algorithm to generate
uncorrelated random networks with a given degree distribu-
tion. In CM, the vertices of the graph are assigned a fixed
sequence of degrees {ki}N

i=0, m ≤ ki ≤ kc, where typi-
cally kc=N , chosen at random from the desired degree dis-
tribution P (k), and with the additional constraint that the∑

i ki must be even. Then, pairs of nodes are chosen ran-
domly and connected by undirected edges. This model gen-
erates a network with the expected degree distribution and
no degree correlations; however, it allows self-loops and
multiple-connections when it is used as described above. It
was proved in [8] that the number of multiple connections
when the maximum degree is fixed to the system size, i.e.,
kc=N , scales with the system size N as N3−γ ln N . Since
we work with hard cutoff values typically less than the natu-
ral cutoff the number of multiple links is much less than the
original CM for which kc=N [9]. After this procedure we
simply delete the multiple connections and self-loops from
the network which gives a very marginal error in the de-
gree distribution exponent. Deleting this discrepancies also
causes some very negligible number of nodes in the net-
work to have degrees less than the fixed minimum degree
(m) value, even zero, as seen in Fig. 2(a). One another char-

acteristic of the CM is that the network is not a connected
network when m=1, i.e., it has disconnected clusters (or
components). For m>1, the network is almost surely con-
nected having one giant component including all the nodes.

4. Local Heuristics for Scale-Free Overlay
Topology Construction

In the PA model as outlined in the previous section, the
new node has to make random attempts to connect to the
existing nodes. To implement this in a P2P (or any dis-
tributed) networks, the new node has to have information
about the global topology (e.g., current total degree in the
network and the degree of the node it attempts to connect),
which might be very hard to maintain in reality. Such global
topology information is needed in the CM as well. Thus, in
order for a topology construction mechanism to be practical
in P2P networks, it must allow joining of new nodes by just
using locally available information. Of course, the cost of
using only local information is expected to be loss of scale-
freeness (or any other desired characteristics) of the whole
overlay topology, which will result in loss of search effi-
ciency in return. In this section, we present two practical
methods using local heuristics not necessarily using global
information about the latest topology: HAPA and DAPA.

4.1. Hop-and-Attempt PA (HAPA)

In this method, the new node randomly selects an exist-
ing node and attempts to connect. Then it randomly selects
a node which is a neighbor of the previously selected node
and attempts to connect. Thus, the new node hops between
the neighboring nodes and attempts to connect by using the
existing links in the network until it fills all its stubs, i.e.,
the number of links it has reaches m.

This hopping process gives a better chance to the new
node to find the high-degree hubs in the network than the
PA does since the hubs in scale-free networks are only a
couple of hops away from the low-degree nodes and it is
less likely to find hubs by random node selection. So, some
nodes in the network (probably they are the initial nodes
and their number is m + 1 due to network generation algo-
rithm) become dominant and attract almost all the nodes to
themselves, thus deserve the name super hubs. The super
hubs have degrees on the order of network size. It is easily
seen that this procedure makes the topology of the system
a star-like topology if the network is not limited by a cut-
off. Naturally, without a hard cutoff the degree distribution
is not a power-law and the average shortest path/diameter is
very small with respect to scale-free networks generated by
PA. As shown in Fig. 2(b), when a hard cutoff is introduced
the degree distribution gets closer to a power law having an
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Figure 3. Degree distribution of DAPA model.

exponent γ = 3 but with possibly exponential factors mak-
ing a degree exponent very hard.

4.2. Discover-and-Attempt PA (DAPA)

DAPA model imitates the method for finding peers in
Gnutella-like [1] unstructured P2P networks. First, we as-
sume that we have a network called substrate network with
a predefined and preconstructed topology at hand. We
used geometric random networks as the substrate network.
Then, we construct an overlay network on this substrate net-
work by using the PA method among the set of nodes visi-
ble/reachable to a specific node (the horizon of the node) in
a number of steps, which we call local time-to-live (or local
TTL) and represent with τsub.

In this model, initially, a few nodes are randomly se-
lected from the substrate network and added to the previ-
ously empty overlay network, GO , then these nodes are
connected to each other in GO . At each step one random
node is chosen in the substrate network and let it send a
query to its neighborhood reachable in τsub hops to get a
list of peers in its horizon. Then by using the rules of pref-
erential attachment the new node connects to m peers with
probability proportional to their degrees divided by the total
degrees of the peers in its horizon. If the number of peers
in the horizon is less than m, then the new node connects to
peers it can find. The nodes which can find at least one peer
in their horizon is added to the GO and becomes a peer. A
peer belonging to GO can not be selected again to look for
new peers. This process is continued until the number of
peers in GO reaches the desired number NO.

The degree distribution of the network generated by
DAPA model exhibits some interesting characteristics. For
small values of τsub, the nodes are shortsighted, i.e., they
cannot see enough peers in their short horizon causing the
degree distribution to be an exponential. For high enough
τsub values, the degree distribution changes into a power-
law. Thus, one can go from an exponential to a scale-free
network by playing with the measure of locality (τsub), as
can be seen in Fig. 3. As the hard cutoff gets smaller the dif-
ference between the degree distributions becomes invisible.
For higher values of m (i.e., m > 1), it is possible to find
peers with degree less than m as in Fig. 3(a), since some
nodes cannot find enough peers in their horizon to fill all

their stubs. The degree distribution exponent has a similar
behavior to PA as we change the hard cutoff value, i.e., as
the cutoff decreases the exponent increases [see Fig. 3(b)].
The data in Fig. 3(b) is very noisy and the data points con-
tain quite large error bars because they are obtained from
very scattered degree distribution tails.

When a peer is to join the current overlay topology, the
PA and CM do need global information about the current
topology whilst HAPA and DAPA methods use local in-
formation partially or fully, respectively. Therefore, HAPA
and DAPA methods are more practical in the context of un-
structured P2P networks.

5. Simulations

We study a number of search algorithms that can be used
to search items in P2P networks utilizing the power-law (the
presence of hubs) degree distribution in sample networks
generated by our topology construction algorithms. We
consider three different search algorithms: flooding (FL),
normalized flooding (NF), and random walk (RW).

5.1. Search Algorithms

Flooding (FL): FL is the most common search algorithm
in unstructured P2P networks. In search by FL, the source
node s, sends a message to all its nearest neighbors. If the
neighbors do not have the requested item, they send on to
their nearest neighbors excluding the source node. This pro-
cess is repeated a certain number of times, which is usually
called as time-to-live (TTL) and we represent it with τ in
this paper. After a message is forwarded an amount of time
equal to τ , it is discarded. Independent floods by the nodes
make the FL algorithm parallel. On the other hand, in this
algorithm a large number of messages is created since the
destination node cannot stop the search. This corresponds
to a complete sweep of all the nodes within a τ hop dis-
tance from the source. The delivery time in search by FL
is measured of intermediate links traversed, and is equal to
the shortest path length. Since the average shortest path for
small-world networks, including scale-free ones generated
by the PA model, is proportional to the logarithm of system
size N or even slower, the average delivery time (TN ) is
logarithmic as well, i.e., TN = log(N).
Normalized Flooding (NF): In search by FL, when large
degree nodes (hubs) are reached, the number of neighbors
for the next step in FL increases dramatically leading to
a poor granularity. This also causes a lot of shared edges
reducing the performance in terms of number of messages
per distinct number of discovered nodes. To overcome this
problem, search by NF algorithm was introduced in [14].
In NF, the minimum degree in the network kmin is an im-
portant factor. NF search algorithm proceeds as follows:
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Figure 4. Normalized Flooding results for PA, CM, and HAPA models when m = 2 and m = 3.
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Figure 5. Normalized Flooding results for
DAPA model.

When a node of degree kmin receives a message, the node
forwards the message to all of its neighbors excluding the
node forwarded the message in the previous step. When a
node with larger degree receives the message, it forwards
the message only to randomly chosen kmin of its neighbors
except the one which forwarded the message.

The NF search algorithm is based on the minimum de-
gree in the network. The fixed minimum degree is equal to
m by definition in PA and HAPA, whereas in CM an DAPA
it is not guaranteed that the minimum degree will be m.
In CM, deletion of self-loops and multiple links reduce the
minimum degree to values less than m down to 1. In DAPA,
however, the minimum degree might be less than m because
of the short range of horizon for some peers which are geo-
graphically far from other peers. But still since the ratio of
nodes with degree less than m is small we ignored them and
ran NF algorithm based on the predefined minimum degree
value m.
Random Walk (RW): RW or multiple RWs have been used
as an alternative search algorithm to achieve even better
granularity than NF. In RW, the message from the source
node is sent to a randomly chosen neighbor. Then, this
random neighbor takes the message and sends it to one of
its random neighbors excluding the node from which it got
the message. This continues until the destination node is
reached or the total number of hops is equal to τ . RW can
also be seen as a special case of FL where only one neighbor
is forwarded the search query, providing the other extreme
situation of the tradeoff between delivery time and messag-
ing complexity. RW search is inherently serial (sequential),
which causes a large increase in the delivery time [19, 13].

In particular, computer simulations performed on a general-
ized scale-free network with degree exponent γ=2.1, which
is equal to the value observed in P2P networks, yield the re-
sult [4]: TN = N0.79.

5.2. Results

We simulated the three search algorithms FL, NF, and
RW on the topologies generated by the four methods PA,
CM, HAPA, and DAPA, and provide results all the com-
binations with various hard cutoffs. Through the PA, CM,
HAPA, and DAPA methods, we generated topologies with
10000 nodes. We used cutoff values of 10 and 40 (or 50 in
some cases), in addition to the natural cutoff, i.e., no hard
cutoff. When generating DAPA topologies, we used τsub

values of 2, 4, 6, 8, 10, 20, and 50 with expectation that
larger τsub should yield better search efficiency. Minimum
degree values (or m) in our topologies were 1, 2, or 3. We
varied the τ values of search queries in FL up to the point we
reach the system size and for NF/RW up to 10. To compare
search efficiencies of RW and NF fairly in our simulations,
we equated τ of RW searches to the number of messages
incurred by the NF searches in the same scenario. Thus,
for the search efficiency graphs of RW [e.g., Fig. 6] when
τ is equal to a particular value such as 4, this means that
the number of hits data-point corresponding to that τ = 4
value is obtained by simulating a RW search with τ equal to
the number of messages that were caused by an NF search
using a τ value of 4. A similar normalization was done in
[14].

In our simulation experiments, we observed that when
there is no hard cutoff in the topology, the FL algorithm can
achieve higher search efficiency by capturing more of the
peers in the network for a specific τ value. Also, the effect
of imposing a hard cutoff reduces when minimum degree
in the topology is higher. We also observed that, for small
values of cutoff, PA and HAPA give similar performances
in FL, whereas for higher values of cutoff HAPA has better
search results due to the star-like topology. The FL in DAPA
is less efficient than in PA, although for higher values of
τsub it gets closer to PA and efficiency of FL increases.
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Figure 6. Random Walk results for PA, CM, and HAPA models for m = 2 and m = 3.

A minimum of three links for all peers eliminates neg-
ative effects of hard cutoffs: An interesting observation is
that negative effect of hard cutoffs on the FL performance
on the PA and HAPA topologies can be easily reduced to
negligible values by increasing the number of stubs m (or
connectedness). The number of stubs as small as 3 leaves
virtually no difference between the search performances of
overlay topologies with or without hard cutoffs. This result
provides the guideline that to achieve a better FL perfor-
mance a requirement of having at least three links to the
rest of the network will be adequate to assure that no one
else in the network will need to maintain unbearably large
number of links. However, the necessity of complete or par-
tial global information about the overall when constructing
a PA topology is a major discouragement of using the PA
and HAPA methods for overlay topologies of unstructured
P2P networks.

There exists an interplay between connectedness and
the degree distribution exponent for a fixed cutoff: As the
DAPA method is a purely local method, it is more interest-
ing to observe search performance on the DAPA topologies.
We observed that when there is weak connectedness (e.g.,
m = 1), imposing hard cutoffs improves the search per-
formance. This is due to the fact that hard cutoffs increase
the connectedness of the topology by moving the links that
were normally go to a hub in a topology without a hard cut-
off. However, when the number of stubs is larger, we ob-
serve an interplay between the degree distribution exponent
and connectedness for a fixed cutoff. We observe that im-
provement caused by hard cutoffs depend on the value of the
hard cutoff, suggesting that reducing hard cutoff value hurts
the search performance after a while. That is, potential im-
provements by having smaller hard cutoffs diminishes as the
performance starts to become dominated by the degree dis-
tribution exponent rather than the connectedness. Another
observation to be made is that impact of local information
plays a major role in the search performance.

Hard cutoffs may improve search efficiency in NF and
RW: More interestingly, for NF and RW, improvements due
to having hard cutoffs are apparent in all three topology gen-
eration methods, including the PA topologies, regardless of

the number of stubs m. This means that practical search al-
gorithms like NF and multiple RWs are affected better by
having hard cutoffs on the overlay topology. For NF, this
is evidenced by Figs. 4(a) and 4(c) for the PA and HAPA
topologies respectively. As it can be seen, having a little
more local connectivity to the network by having a mini-
mum of 2-3 links in every peer, the search performance in-
creases rapidly for the same τ values. For RW, a very sim-
ilar behavior is exhibited in Figs. 6(a) and 6(c), with only
difference that effect of hard cutoffs is more apparent due
to the fact that NF does better averaging of search possibil-
ities. The observed behavior of RW illustrates how bad the
effect of hard cutoffs can be on the search performance. It
is intuitive that multiple RWs would perform more similar
to NF in terms of performance.

More global information is more important when tar-
get connectedness is high: Figs. 5 shows the search per-
formance of NF on DAPA topologies on semi-logarithmic
scale when m = 2 and m = 3. We observe, again, that
as the hard cutoff is getting smaller, the search efficiency
improves regardless of the connectedness m. Also, having
a little better connectedness (e.g. by comparing Fig. 5(a)
against Fig. 5(b)) improves the search performance greatly.
An interesting observation is that, when constructing the
overlay topology, having more information (i.e. larger τsub)
about the global topology (thus more scale-freeness in the
overall topology) yields more important improvements on
the search performance for topologies with more connected-
ness, i.e. larger m. This means that, for the purpose of con-
structing topologies with better search performance, when
the target connectedness value is high one needs to be more
patient and obtain as much information as possible before
finalizing its links to the rest of the peers.

DAPA and HAPA models perform almost as optimal as
the CM: An interesting characteristic to observe is how
close the performances of DAPA and HAPA are to the best
possible correspondent CM for the NF and RW search al-
gorithms. Unlike the other topology construction mecha-
nisms studied in this paper, CM achieves a perfect scale-
freeness for a given target hard cutoff value, with the cost
of global information. Specifically, topologies generated by
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the CM do not have big jumps at the hard cutoff values [e.g.,
Fig. 1(b)] in their degree distributions, in such a way that
the links are configured in the perfect manner to assure that
no node has links more than the target hard cutoff and the
degrees of nodes follow exactly a power-law. This can be
seen by comparing Fig. 2(a) with its counterparts Figs. 1,
2(b), and 3. As can be seen from Figs. 4(b) and 4(c), with
connectedness m = 2 or m = 3, HAPA performs slightly
worse than CM when using NF. Similarly, DAPA perfor-
mance for moderate τsub values (e.g. 6) is very close to the
optimal possible by the CM.

6. Summary and Discussions

We studied effects of the hard cutoffs peers impose on
the number of entries they store on the search efficiency.
Specifically, we showed that the exponent of the degree dis-
tribution reduces as hard cutoffs imposed by peers become
smaller. We introduced new scale-free topology generation
mechanisms (e.g., HAPA and DAPA) that use completely
or partially local information unlike traditional scale-free
topology generation mechanisms (i.e., PA and CM) using
global topology information. We showed that topologies
generated by our mechanisms allow better search efficiency
in practical search algorithms like normalized FL and RW.
Our study also revealed that interplay between the degree
distribution exponent with a fixed hard cutoff and connect-
edness is likely to occur when using our mechanisms. We
also showed that this interplay can be exploited by enforc-
ing simple join rules to peers such as requiring each peer to
have a minimum of 2-3 links to the rest of the unstructured
P2P network.

Future work will include study of join/leave scenarios
for the overlay topologies while attempting to maintain the
scale-freeness of the overall topology. The challenge is to
achieve minimal messaging overhead for join and leave op-
erations of peers while keeping the scale-freeness in a topol-
ogy with a hard cutoff.
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